专利摘要:
The invention includes methods for forming integrated circuits within substrates, and embedded circuits. In one aspect, the invention includes a method of forming an integrated circuit within a substrate comprising: a) providing a recess in a substrate; b) printing an antenna within the recess; and c) providing an integrated circuit chip and a battery in electrical connection with the antenna. In another aspect, the invention includes a method of forming an integrated circuit within a substrate comprising: a) providing a substrate having a first recess and a second recess formed therein; b) printing a conductive film between the first and second recesses and within the first and second recesses, the conductive film forming electrical interconnects between and within the first and second recesses; c) providing a first electrical component within the first recess and in electrical connection with the electrical interconnects therein; d) providing a second electrical component within the second recess and in electrical connection with the electrical interconnects therein; and e) covering the first electrical component, the second electrical component and the conductive film with at least one protective cover. In another aspect, the invention includes an embedded circuit comprising: a) a substrate having a recess therein, the recess having a bottom surface and a sidewall surface joined to the bottom surface; b) interconnect circuitry formed on the bottom and sidewall surfaces; and c) an integrated circuit chip within the recess and operatively connected to the interconnect circuitry.
公开号:US20010002826A1
申请号:US09/305,107
申请日:1999-05-04
公开日:2001-06-07
发明作者:Mark E. Tuttle;Rickie C. Lake
申请人:AVANDEL Inc;Micron Technology Inc;
IPC主号:G06K19-0775
专利说明:
[0001] The invention pertains to methods of forming integrated circuits within substrates, and to embedded circuits. The invention is thought to have particular application towards methods of forming integrated circuits within personal cards, such as personal identification cards and credit cards. [0001] BACKGROUND OF THE INVENTION
[0002] Smart cards typically include an integrated circuit providing both memory and processing functions, have words or pictures printed on them, and control who uses information stored in the integrated circuit and how the information is used. [0002]
[0003] Some smart cards have length and width dimensions corresponding to those of credit cards. The size of such smart cards is determined by an international standard (ISO 7816). ISO 7816 also defines the physical characteristics of the plastic, including temperature tolerance and flexibility. ISO 7816 also defines the position of electrical contacts and their functions, and the protocol for communications between the integrated circuit and readers (vending machines, pay phones, etc.). The term “smart card”, as used herein, is meant to include cards that include microprocessors. Such cards might not conform to ISO [0003] 7816.
[0004] Several types of plastic are used for the casings or housings of smart cards. PVC and ABS are typical. PVC can be embossed, but is not recyclable. ABS is not readily embossed, but is recyclable. [0004]
[0005] Smart cards have many different applications. For example, smart cards can be pre-paid cards used instead of money for making purchases from vending machines, gaming machines, gas stations, car washes, photocopiers, laundry machines, cinemas, fast-food restaurants, retail outlets, or anywhere where cash is used. For example, they are commonly used in Europe with public telephones. A timer is used to deduct a balance from the card automatically while a conversation continues. Smart cards can be used as food stamps, or for redeeming other government-provided benefits. Because the transaction is electronic, the telephone, vending machine, etc. does not need to store cash, so risk of loss due to theft can be reduced. Change does not need to be stored and disbursed, and received payment can be directly wired to a bank. Pre-paid cards can be a form of advertising, because they can have logos or other information printed on them. The user would typically carry the card for weeks before using up the value on the card. [0005]
[0006] To authenticate a conventional credit card, a telephone call must be made to verify that sufficient funds are available. Smart cards permit such verification to be performed off-line, thus saving telecommunication charges. Smart cards thus provide an advantage over conventional credit cards. Smart cards can also be used as keys to gain access to restricted areas, such as secure areas of buildings, or to access parking lots. [0006]
[0007] Radio frequency identification devices (RFIDs) can also be considered smart cards if they include an integrated circuit. RFIDs are described in detail in U.S. patent application Ser. No. 08/705,043, filed Aug. 29, 1996, and incorporated herein by reference. RFIDs comprising integrated circuits may be referred to as intelligent RFIDs or as remote intelligent communication (RIC) devices. [0007]
[0008] Smart cards will typically contain an integrated circuit, typically provided as a packaged integrated circuit chip (IC chip). The smart card may also comprise electrical interconnects for connecting the IC chip to terminals. In other instances, the electronic interconnects will comprise an antenna, such as, for example, when the integrated circuit comprises radio frequency identification device circuitry. In other instances, an antenna, battery and IC may be inserted into smart cards. As smart cards are intended to be conveniently carried by persons, it is desirable to produce smart cards which are relatively thin, preferably having a size and shape similar to credit cards. This enables the cards to be carried on a person, such as, for example, in a person's wallet. [0008] SUMMARY OF THE INVENTION
[0009] The invention encompasses methods for forming integrated circuits within substrates, and embedded circuits. [0009]
[0010] In one aspect, the invention encompasses a method of forming an integrated circuit within a substrate. A recess is formed in the substrate, and an antenna is printed within the recess. An integrated circuit chip and a battery are provided in operative electrical connection with the antenna. [0010]
[0011] In another aspect, the invention encompasses a method of forming a plurality of cards. A substrate sheet is provided and a plurality of recesses are formed within the substrate sheet. The individual recesses have bottom surfaces and sidewall surfaces joined to the bottom surfaces. A conductive film is printed within the recesses to form electrical interconnects within the recesses. The electrical interconnects extend along the bottom surfaces and the sidewall surfaces of the recesses, and also on top surfaces of the substrate sheet. Integrated circuit chips are placed within the recesses and in electrical connection with the electrical interconnects. The integrated circuit chips and the conductive film within the recesses are covered with a protective cover. The substrate sheet is divided into a plurality of cards. [0011]
[0012] In another aspect, the invention encompasses an embedded circuit. The embedded circuit includes a substrate having a recess therein; a conductive circuit printed within the recess and an integrated circuit chip bonded to the conductive circuit. [0012]
[0013] In another aspect, the invention encompasses an embedded circuit. The embedded circuit includes a substrate having a recess therein; a conductive circuit printed within the recess; an integrated circuit chip bonded to the conductive circuit; and a battery in electrical connection with the integrated circuit chip. [0013] BRIEF DESCRIPTION OF THE DRAWINGS
[0014] Preferred embodiments of the invention are described below with reference to the following accompanying drawings. [0014]
[0015] FIG. 1 is a schematic perspective view of a card and a printing pad at a preliminary step of a first embodiment method of the present invention. [0015]
[0016] FIG. 2 is a schematic perspective view of the FIG. 1 card and printing pad shown at a processing step subsequent to that of FIG. 1. [0016]
[0017] FIG. 3 is a perspective view of the FIG. 1 card shown at a processing step subsequent to that of FIG. 2. [0017]
[0018] FIG. 4 is a perspective view of the FIG. 1 card shown at a processing step subsequent to that of FIG. 3. [0018]
[0019] FIG. 5 is a cross-sectional view of the FIG. 4 card taken along line [0019] 5-5 in FIG. 4.
[0020] FIG. 6 is a cross-sectional view of the FIG. 1 card taken along line [0020] 5-5 in FIG. 4, and shown at a processing step subsequent to that of FIG. 5.
[0021] FIG. 7 is a cross-sectional view of the FIG. 1 card taken along line [0021] 5-5 in FIG. 4, and shown at a processing step subsequent to that of FIG. 5.
[0022] FIG. 8 is a perspective view of a card being produced according to a second embodiment method of the present invention. [0022]
[0023] FIG. 9 is a cross-sectional view of the FIG. 8 card taken along the line [0023] 9-9 in FIG. 8.
[0024] FIG. 10 is a perspective view of a card being produced according to a third embodiment method of the present invention. [0024]
[0025] FIG. 11 is a cross-sectional view of the FIG. 10 card taken along the line [0025] 11-11 in FIG. 10.
[0026] FIG. 12 is an elevational view of a substrate sheet processed according to a method of the present invention. [0026]
[0027] FIG. 13 is an elevational view of the sheet of FIG. 12 at a processing step shown subsequent to that of FIG. 12. [0027] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0028] This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8). [0028]
[0029] A first embodiment method of the present invention is described with reference to FIGS. [0029] 1-7. Referring to FIG. 1, a substrate 10 is shown at a preliminary step of the first embodiment method. Substrate 10 is preferably a card substrate in the approximate shape of a credit card. Substrate 10 can comprise any of a number of materials known to persons of ordinary skill in the art, such as for example, PVC or ABS plastic. As will become apparent from the following discussion, substrate 10 might ultimately be used for a radio frequency card, smart card, or other card built with multiple, interconnected components, including an integrated circuit. Accordingly, substrate 10 preferably comprises a configuration suitable for one or more of the above-discussed ultimate uses.
[0030] Substrate [0030] 10 comprises a substrate body 13, a front surface 12, and an opposing back surface 11 (shown in FIG. 5). A recess 14 is provided through front surface 12 and into substrate 10. Recess 14 can be formed by conventional methods. Examples include cutting with a blade, grinding wheel or laser. Another example method for forming recess 14 is to form the recess in situ at a time of card creation by injection molding the card in a shape comprising recess 14. Recess 14 has a bottom surface 16 and sidewall surfaces 18 joined to bottom surface 16. As most clearly shown in FIGS. 5-7, sidewall surfaces 18 preferably extend non-perpendicularly from bottom surface 16. Such non-perpendicular orientation of sidewall surfaces 18 relative to bottom surface 16 can simplify a below-discussed printing of a circuit 22 (shown in FIG. 3) over such sidewall surfaces. It is noted, however, that the present invention also encompasses applications in which sidewall surfaces 18 extend perpendicularly from bottom surface 16.
[0031] Still referring to FIG. 1, a printing pad [0031] 20 is elevated above substrate 10. Printing pad 20 preferably comprises a deformable material, such as for example, foam, sponge, or silicone rubber. A circuit pattern 21 is formed on printing pad 20, and comprises, for example, a conductive film. Circuit pattern 21 can be formed by, for example, pressing pad 20 onto a plate having a shape corresponding to circuit pattern 21 etched within it.
[0032] Referring to FIG. 2, printing pad [0032] 20 is pressed against substrate 10 to transfer circuit pattern 21 to substrate 10 and thereby print a circuit 22 (shown in FIG. 3) upon substrate 10 and within recess 14. In the shown embodiment, printing pad 20 is configured to a print the circuit pattern on bottom surface 16, on two of sidewall surfaces 18, and on upper surface 12. In alternate embodiments which are not shown, printing pad 20 can be configured to print on less than all of surfaces 16, 18 and 20. For instance, in such alternate embodiments, printing pad 20 may be configured to print only on bottom surface 16, or only on bottom surface 16 and one of the sidewall surfaces 18. Suitable materials which may be pad printed to form circuit 22 are conductive films, such as, for example, printed thick films (PTFs) comprising silver-filled organic material. It is noted that, although pad printing is shown, the printing can comprise other printing methods known to persons of ordinary skill in the art, including, for example, stencil printing, screen printing, spray printing, needle dispense printing, etc. After conductive circuit 22 is printed, the circuit can be cured by conventional methods.
[0033] After curing, circuit [0033] 22 will have a thickness and associated degree of conductivity. If the conductivity is lower than desired as may occur if, for example, conductive material of circuit 22 is too thin, or not adequately a low resistance material, the conductivity can be enhanced by providing an electroless plated metal, such as copper or nickel, against substrate 10 and circuit 22. The electroless plated metal selectively plates conductive circuit 22, while not plating non-conductive surfaces of substrate 10. The electroless plating of metal can be accomplished by conventional methods.
[0034] Referring to FIG. 3, circuit [0034] 22 preferably comprises conductive interconnects 23 and 24, and an antenna 26. Interconnect 23 comprises nodes 25 and 27, interconnect 24 comprises nodes 28 and 30, and antenna 26 comprises nodes 32 and 33. Nodes 25, 27, 28, 30, 32 and 33 are illustrated as being wider than the rest of interconnects 23 and 24, and antenna 26. However, as will be appreciated by persons of ordinary skill in the art, nodes 25, 27, 28, 30, 32 and 33 could also be a same size as the rest of interconnects 23, 24 and antenna 26; or narrower than the rest of interconnects 23, 24 and antenna 26. Node 27 preferably comprises the shown arcuate shape complementary to an outer surface of a battery 36 (shown in FIG. 4), which is to be joined to node 27. In the shown preferred embodiment, antenna 26 is a loop antenna comprising a predominate portion outside of recess 14 and on substrate surface 12. In other embodiments (not shown), antenna 26 could be entirely within recess 14, or comprise a predominate portion within recess 14.
[0035] In the preferred embodiment, antenna [0035] 26 constitutes a part of, and is formed at the same time as, the other integrated circuitry. It is noted that antenna 26 could be formed in two steps, with a portion of antenna 26 being formed before or after pad printing of circuit 22. For instance, the portion of antenna 26 extending along upper surface 12 could be formed prior to printing circuit 22. Then, a portion of antenna 26 could be printed as part of circuit 22 to create nodes 32 and 33, and to connect the previously formed portion of antenna 26 with nodes 32 and 33. In such circumstances, the portion of antenna 26 which is not formed as part of circuit 22 could be formed by methods other than those utilized to form circuit 22. For instance, if circuit 22 is pad printed, the portion of antenna 26 not formed as part of circuit 22 could be formed by a method other than pad printing. Such other methods will be recognized by persons of ordinary skill in the art.
[0036] Referring to FIG. 4, electrical components [0036] 36 and 38 are bonded to one or more of nodes 25, 27, 28, 30, 32 and 33 (shown in FIG. 3). By way of example only, electrical component 36 comprises a battery and component 38 comprises a monolithic integrated circuit formed on a chip. Components 36 and 38 may be bonded to nodes 25, 27, 28, 30, 32 and 33 (shown in FIG. 3), utilizing a conductive adhesive 35 which is cured after provision of components 36 and 38. An example conductive adhesive 35 is a conductive epoxy. Battery 36 could alternatively be provided directly bonded to integrated circuit chip 38. In such circumstances, the bonding of battery 36 to integrated circuit 38 can occur either before or after placing integrated circuit 38 and battery 36 within recess 14. Also, as will be recognized by persons of ordinary skill in the art, at least one of the electrical components 36 or 38 could be provided externally of recess 14.
[0037] In the illustrated embodiment, interconnects [0037] 23 and 24 connect battery 36 to integrated circuit 38, and antenna 26 connects with integrated circuit 38. Battery 36, interconnects 23 and 24, integrated circuit 38 and antenna 26 together form a radio frequency identification device (RFID).
[0038] After provision of circuit [0038] 22 and one or both of components 36 and 38 within recess 14, a protective cover is ideally formed over circuit 22 and recess 14. FIGS. 6 and 7 illustrate two methods of protectively covering circuit 22 and the components within recess 14. Referring first to FIG. 6, a cap 40 can be adhered over substrate 10 and over recess 14. Cap 40 may be adhered, for example, by adhesives, such as glue, or by mechanical fasteners, such as staples or screws. Example materials for cap 40 include plastic, metal, and flexible or rigid adhesive tape. In the shown embodiment, portions of loop antenna 26 are between cap 40 and substrate body 13. Such portions of loop antenna 26 are generally thin enough that they do not interfere with bonding of cap 40 to substrate body 13. To further minimize interference of such portions of loop antenna 26 with bonding of cap 40 to substrate body 13, cap 40 can be formed of a material which conforms over and around loop antenna 26, such as, for example, a deformable material. Also, in embodiments which are not shown, antenna 26 can be formed entirely within recess 14 to minimize interference of antenna 26 with bonding of cap 40 to substrate body 13.
[0039] Referring to FIG. 7, circuitry [0039] 22 and components 36 and 38 can be covered with an encapsulant 42. Such encapsulant may comprise, for example, a low temperature curing insulating material, such as, for example, a two-part epoxy or urethane. Encapsulant 42 will preferably be provided initially as a liquid material and to overfill recess 14 and overlay antenna 26. Encapsulant 42 can then be cured into a solid mass, and either milled or sanded to form the shown preferred substantially planar upper surface 44.
[0040] It is noted that the methods of FIGS. 6 and 7 are merely example methods for covering circuitry proximate and within recess [0040] 14. The invention encompasses other methods for covering such circuitry which will be recognized by persons of ordinary skill in the art. The methods of FIGS. 6 and 7 could also be combined. For instance, a recess could be partially filled with an encapsulant and then covered. Such combined methods may have particular application toward sealing cards containing multiple recesses which are discussed below. In such cards, an integrated circuit could be within one recess and a battery within another. The integrated circuit could be covered with encapsulant and/or a cap, and the battery covered only with a removable cap. In such applications the integrated circuit would be well-protected and the battery could be easily replaceable.
[0041] After provision of a protective cover over recess [0041] 14, the construction of a card is substantially finished. The card may then be covered with a laminating film for cosmetic, printability, or logo reasons. An example laminating film would be a thin (less than about one mil) PVC sheet bonded to substrate 10 with an adhesive.
[0042] A second embodiment method of the present invention is described with reference to FIGS. 8 and 9. In describing FIGS. 8 and 9, numbering similar to that utilized above in describing FIGS. [0042] 1-7 will be used, with differences indicated by the suffix “a” or by different numerals.
[0043] Referring to FIGS. 8 and 9, a substrate [0043] 10 a is illustrated: Substrate 10 a comprises a first recess 52 and a second recess 54. In the illustrated and preferred embodiment, first recess 52 is formed in the substrate and second recess 54 is formed within first recess 52 and essentially constitutes a part thereof. A conductive circuit 22 a is formed within recesses 52 and 54 and comprises interconnects 23 a and 24 a, and antenna 26 a. Antenna 26 a is a loop antenna which extends beyond recesses 52 and 54. Interconnects 23 a and 24 a connect electrical components 36 a and 38 a. Interconnects 23 a and 24 a, and antenna 26 a, are preferably formed by printing a conductive film within first and second recesses 52 and 54, utilizing procedures analogous to those discussed above with reference to FIGS. 1-3.
[0044] In the illustrated embodiment, components [0044] 36 a and 38 a are each within a recess, with component 36 a being within first recess 52 and component 38 a being within second recess 54. First recess 52 comprises a bottom surface 56 and sidewall surfaces 58. Second recess 54 comprises a bottom surface 60 and sidewall surfaces 62. Sidewall surfaces 58 and 62 can extend non-perpendicularly from bottom surfaces 56 and 60, respectively, to simplify printing of circuit 22 a over such sidewall surfaces. First recess 52 is separated from second recess 54 by one of the sidewall surfaces 62. The separating sidewall 62 extends non-perpendicularly from both of bottom surface 56 and bottom surface 60. Interconnects 23 a and 24 a extend over the separating sidewall surface 62 and along bottom surfaces 60 and 56. Interconnects 23 a and 24 a thus extend continuously from electrical component 36 a to electrical component 38 a.
[0045] Substrate [0045] 10 a comprises a front surface 12 a and an opposing back surface 11 a. Preferably, first recess 52 and second recess 54 both extend through the same of either front surface 12 a or back surface 11 a. In FIGS. 8 and 9, recesses 52 and 54 are illustrated as both extending through front surface 12 a.
[0046] Subsequent processing of substrate [0046] 10 a can be performed in accordance with the processing of either FIG. 6 or FIG. 7 to cover first and second electrical components 36 a and 38 a, and electrical circuit 22 a, with at least one protective cover.
[0047] A third embodiment method of the present invention is described with reference to FIGS. 10 and 11. In describing FIGS. 10 and 11, numbering similar to that utilized above in describing FIGS. [0047] 1-7 will be used, with differences indicated by the suffix “b” or by different numerals.
[0048] A substrate [0048] 10 b comprises a substrate body 13 b, a front surface 12 b, and an opposing back surface 11 b. A recess 14 b is provided through front surface 12 b and into substrate 10 b. Electrical components 36 b and 38 b are within recess 14 b and connected by interconnects 23 b and 24 b. A loop antenna 26 b is electrically connected with component 38 b. Loop antenna 26 b extends from component 38 b, out of recess 14 b, and along surface 12 b of substrate 10 b. Antenna 26 b crosses over itself at a bypass 70. Antenna 26 b comprises a first portion 66 and a second portion 68 at bypass 70, with second portion 68 crossing over first portion 66. Bypass 70 comprises an insulative material 72 separating first portion 66 from second portion 68. Insulative material 72 can comprise, for example, silicon dioxide.
[0049] Methods for forming antenna [0049] 26 b will be recognized by persons of ordinary skill in the art. Such methods could include, for example, printing methods similar to those discussed above in discussing FIGS. 1-3, with the exception that two printing steps would be utilized in forming antenna 26 b. More specifically, a first printing step would be utilized to form the portion of antenna 26 b underlying insulative material 72, and a second printing step would be utilized to form the portion of antenna 26 b overlying material 72. Insulative material 72 would be formed between the two printing steps. Insulative material 72 can be formed by conventional methods.
[0050] Although the embodiment of FIGS. 10 and 11 is illustrated with only two loops and only one bypass [0050] 70, persons of ordinary skill in the art will recognize that alternate embodiments could be formed comprising more than two loops and a plurality of bypasses 70. The utilization of one or more bypasses 70 can advantageously permit relatively long loop antennas to be formed on a card substrate.
[0051] It is noted that although antenna second portion [0051] 68 is illustrated as being substantially perpendicular to antenna first portion 66 at bypass 70, the invention encompasses other embodiments (not shown) in which an antenna second portion is non-perpendicular to an antenna first portion at a bypass of the antenna portions.
[0052] The processing described above with reference to FIGS. [0052] 1-11 forms embedded circuits within substrates. Such embedded circuits can comprise, for example, circuitry 22, 22 a or 22 b, and one or more of components 36, 36 a, 36 b, 38, 38 a and 38 b.
[0053] Although FIGS. [0053] 1-11 illustrate formation of a single card, the invention encompasses methods in which a plurality of cards are formed. Such plurality of cards may be formed by forming a number of recesses within a single sheet, and then dividing the sheet into singulated cards. The division into singulated cards may occur before or after any of the steps illustrated in FIGS. 1-11. For example, the division into singulated cards may occur after printing of conductive circuitry (shown in FIG. 2), and prior to provision of components 36 and 38 within a recess. The division of a large sheet into singulated sheets can be performed by a number of methods known to persons of ordinary skill in the art, including, for example, sawing or cutting mechanically or by a laser.
[0054] The formation of a number of individual cards from a single sheet substrate is illustrated in FIGS. 12 and 13. In referring to FIGS. 12 and 13, similar numbering to that utilized above in describing FIGS. [0054] 1-7 is utilized, with differences being indicated by the suffix “c” or with different numerals. Referring to FIG. 12, a sheet substrate 50 comprises a plurality of recesses 14 c. Referring to FIG. 13, the sheer substrate 50 (shown in FIG. 12) is divided into a number of singular card substrates 10 c. The individual card substrates 10 c comprise at least one recess 14 c. It is noted that the invention encompasses methods in which not all of the individual substrates 10 c comprise equal numbers of recesses 14 c, and encompasses embodiments in which some of the individual substrates comprise no recess 14 c. However, generally at least two of the formed substrates 10 c will comprise at least one recess 14 c.
[0055] In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents. [0055]
权利要求:
Claims (68)
[1" id="US-20010002826-A1-CLM-00001] 1. A method of forming a radio frequency communication device comprising:
providing a recess within a substrate;
providing at least a portion of an antenna within the recess; and
providing an integrated circuit at least partially within the recess and in operative electrical connection with the antenna.
[2" id="US-20010002826-A1-CLM-00002] 2. The method of
claim 1 wherein the providing the recess within the substrate comprises cutting the substrate.
[3" id="US-20010002826-A1-CLM-00003] 3. The method of
claim 1 wherein the providing the recess within the substrate comprises molding the substrate in a shape comprising the recess.
[4" id="US-20010002826-A1-CLM-00004] 4. The method of
claim 1 wherein the antenna is a loop antenna which crosses itself at a bypass, said bypass comprising dielectric material between crossing portions of the loop antenna.
[5" id="US-20010002826-A1-CLM-00005] 5. A method of forming an integrated circuit within a substrate comprising:
providing a recess in a substrate;
providing at least a portion of an antenna within the recess; and
providing an integrated circuit chip and a battery supported by the substrate and in operative electrical connection with the antenna.
[6" id="US-20010002826-A1-CLM-00006] 6. The method of
claim 5 wherein the substrate is a card configured for carrying on a person.
[7" id="US-20010002826-A1-CLM-00007] 7. The method of
claim 5 wherein the antenna is provided substantially entirely within the recess.
[8" id="US-20010002826-A1-CLM-00008] 8. The method of
claim 5 wherein the antenna is provided within the recess and on a portion of the substrate outside of the recess.
[9" id="US-20010002826-A1-CLM-00009] 9. The method of
claim 8 wherein the antenna comprises a predominate portion within the recess.
[10" id="US-20010002826-A1-CLM-00010] 10. The method of
claim 8 wherein the antenna comprises a predominate portion outside of the recess.
[11" id="US-20010002826-A1-CLM-00011] 11. The method of
claim 5 wherein the antenna is a loop antenna which crosses itself at a bypass, said bypass comprising dielectric material between crossing portions of the loop antenna.
[12" id="US-20010002826-A1-CLM-00012] 12. The method of
claim 5 wherein at least one of the battery and the integrated circuit chip are provided at least partially within the recess.
[13" id="US-20010002826-A1-CLM-00013] 13. The method of
claim 5 wherein the battery is bonded to the substrate within the recess.
[14" id="US-20010002826-A1-CLM-00014] 14. The method of
claim 5 wherein the step of providing the antenna comprises printing a conductive film.
[15" id="US-20010002826-A1-CLM-00015] 15. The method of
claim 5 wherein the step of providing the antenna comprises pad printing a conductive film.
[16" id="US-20010002826-A1-CLM-00016] 16. A method of forming an integrated circuit within a substrate comprising:
providing a recess in a substrate;
providing at least a portion of a loop antenna within the recess, the loop antenna comprising a bypass where portions of the antenna cross one another, the bypass comprising a dielectric material between the crossing portions of the antenna; and
providing an integrated circuit chip in operative electrical connection with the antenna.
[17" id="US-20010002826-A1-CLM-00017] 17. The method of
claim 16 wherein the portions of the antenna which cross one another are substantially perpendicular to one another.
[18" id="US-20010002826-A1-CLM-00018] 18. A method of forming an integrated circuit within a substrate comprising:
providing a recess in a substrate;
printing at least a portion of a conductive circuit within the recess;
placing an integrated circuit chip within the recess and bonding the integrated circuit chip to the conductive circuit; and
placing a battery within the recess and in electrical connection with the integrated circuit chip.
[19" id="US-20010002826-A1-CLM-00019] 19. The method of
claim 18 wherein the substrate is a card configured for carrying on a person.
[20" id="US-20010002826-A1-CLM-00020] 20. The method of
claim 18 further comprising, after the printing, providing an electroless metal within the recess to selectively plate the conductive circuit.
[21" id="US-20010002826-A1-CLM-00021] 21. The method of
claim 18 wherein the step of printing the conductive circuit comprises pad printing a conductive film.
[22" id="US-20010002826-A1-CLM-00022] 22. The method of
claim 18 further comprising, after bonding the chip to the conductive circuit, filling the recess with a liquid encapsulation material and curing the encapsulation material into a solid mass.
[23" id="US-20010002826-A1-CLM-00023] 23. The method of
claim 18 further comprising, after bonding the chip to the conductive circuit, covering the recess with a protective cover.
[24" id="US-20010002826-A1-CLM-00024] 24. A method of forming a circuit within a substrate comprising:
providing a substrate having a recess formed therein, said recess having a bottom surface and a sidewall surface joined to the bottom surface; and
printing a conductive film on the bottom surface of the recess to at least partially form a circuit within the recess.
[25" id="US-20010002826-A1-CLM-00025] 25. The method of
claim 24 wherein substrate is a card configured for carrying on a person.
[26" id="US-20010002826-A1-CLM-00026] 26. The method of
claim 24 wherein the sidewall surface extends perpendicularly from the bottom surface.
[27" id="US-20010002826-A1-CLM-00027] 27. The method of
claim 24 wherein the sidewall surface extends non-perpendicularly from the bottom surface.
[28" id="US-20010002826-A1-CLM-00028] 28. A method of forming a circuit within a substrate comprising:
providing a substrate having a recess formed therein, said recess having a bottom surface and a sidewall surface joined to the bottom surface; and
printing a conductive film on the bottom surface of the recess and along the sidewall surface of the recess to at least partially form a circuit within the recess.
[29" id="US-20010002826-A1-CLM-00029] 29. The method of
claim 28 wherein substrate is a card configured for carrying on a person.
[30" id="US-20010002826-A1-CLM-00030] 30. The method of
claim 28 wherein the conductive film is pad printed on the sidewall surface and the bottom surface.
[31" id="US-20010002826-A1-CLM-00031] 31. The method of
claim 28 wherein the conductive film is pad printed on the sidewall surface and the bottom surface and further comprising, after the pad printing, providing electroless metal within the recess to selectively plate the conductive film.
[32" id="US-20010002826-A1-CLM-00032] 32. The method of
claim 28 wherein the sidewall surface extends non-perpendicularly from the bottom surface.
[33" id="US-20010002826-A1-CLM-00033] 33. A method of forming an integrated circuit within a substrate comprising:
providing a substrate having a recess formed therein, said recess having a bottom surface and a sidewall surface joined to the bottom surface;
printing a conductive film within the recess to form electrical interconnects within the recess, the electrical interconnects extending along the bottom surface and the sidewall surface of the recess;
placing an integrated circuit chip within the recess and in electrical connection with the electrical interconnects; and
covering the integrated circuit and the conductive film within the recess with a protective cover.
[34" id="US-20010002826-A1-CLM-00034] 34. The method of
claim 33 wherein the step of covering the integrated circuit and the conductive film comprises filling the recess with a liquid encapsulation material and curing the encapsulation material into a solid mass.
[35" id="US-20010002826-A1-CLM-00035] 35. The method of
claim 33 wherein the substrate is a card configured for carrying on a person.
[36" id="US-20010002826-A1-CLM-00036] 36. The method of
claim 33 wherein the step of covering the integrated circuit and the conductive film comprises providing a cap over the recess.
[37" id="US-20010002826-A1-CLM-00037] 37. The method of
claim 33 wherein the printing of the conductive film comprises pad printing the conductive film on the sidewall surface and the bottom surface.
[38" id="US-20010002826-A1-CLM-00038] 38. The method of
claim 33 wherein the integrated circuit comprises radio frequency identification device circuitry, and further comprising placing a battery within the recess and in electrical connection with the radio frequency identification device circuitry through the electrical interconnects.
[39" id="US-20010002826-A1-CLM-00039] 39. The method of
claim 33 wherein the sidewall surface extends non-perpendicularly from the bottom surface.
[40" id="US-20010002826-A1-CLM-00040] 40. A method of forming a plurality of cards comprising:
providing a substrate sheet;
forming a plurality of individual recesses within the substrate sheet, the individual recesses having bottom surfaces and sidewall surfaces joined to the bottom surfaces;
printing a conductive film within the recesses to form electrical interconnects within the recesses, the electrical interconnects extending along the bottom surfaces and the sidewall surfaces of the recesses;
placing integrated circuit chips within the recesses and in electrical connection with the electrical interconnects;
covering the integrated circuit chips and the conductive film within the recesses with a protective cover; and
dividing the substrate sheet into a plurality of individual cards.
[41" id="US-20010002826-A1-CLM-00041] 41. A method of forming an integrated circuit within a substrate comprising:
providing a substrate having a first recess and a second recess formed therein;
printing a conductive film between the first and second recesses and within the first and second recesses, the conductive film forming electrical interconnects between and within the first and second recesses;
providing a first electrical component within the first recess and in electrical connection with the electrical interconnects therein;
providing a second electrical component within the second recess and in electrical connection with the electrical interconnects therein; and
covering the first electrical component, the second electrical component and the conductive film with at least one protective cover.
[42" id="US-20010002826-A1-CLM-00042] 42. The method of
claim 41 wherein the substrate is a card configured for carrying on a person.
[43" id="US-20010002826-A1-CLM-00043] 43. The method of
claim 41 wherein the first and second recesses comprise bottom surfaces and sidewall surfaces extending from the bottom surfaces, wherein the first and second recesses are separated from one another by at least one of said sidewall surfaces, and wherein the printing comprises printing a conductive film along said bottom surfaces and along said at least one sidewall surface.
[44" id="US-20010002826-A1-CLM-00044] 44. The method of
claim 43 wherein the printing comprises pad printing.
[45" id="US-20010002826-A1-CLM-00045] 45. The method of
claim 43 wherein the at least one sidewall surface extends non-perpendicularly from both of the bottom surfaces.
[46" id="US-20010002826-A1-CLM-00046] 46. The method of
claim 41 wherein the substrate has a front surface and a back surface and wherein both of the first and second recesses extend through the same of the front and back substrate surfaces.
[47" id="US-20010002826-A1-CLM-00047] 47. The method of
claim 41 wherein the first recess is within the second recess.
[48" id="US-20010002826-A1-CLM-00048] 48. The method of
claim 41 wherein the printing of the conductive film forms an antenna which is at least partially within one of the first or second recesses, wherein the first electrical component comprises a battery and wherein the second electrical component comprises radio frequency identification device circuitry.
[49" id="US-20010002826-A1-CLM-00049] 49. The method of
claim 41 wherein the printing of the conductive film comprises pad printing the conductive film within the first and second recesses.
[50" id="US-20010002826-A1-CLM-00050] 50. An embedded circuit comprising:
a substrate having a recess therein;
a conductive circuit printed at least partially within the recess; and
an integrated circuit chip bonded to the conductive circuit.
[51" id="US-20010002826-A1-CLM-00051] 51. The embedded circuit of
claim 50 further comprising an antenna in electrical connection with the integrated circuit chip.
[52" id="US-20010002826-A1-CLM-00052] 52. The embedded circuit of
claim 50 further comprising a loop antenna in electrical connection with the integrated circuit chip, the loop antenna comprising a bypass where portions of the antenna cross one another, the bypass comprising a dielectric material between the crossing portions of the antenna.
[53" id="US-20010002826-A1-CLM-00053] 53. The embedded circuit of
claim 52 wherein the portions of the antenna which cross one another are substantially perpendicular to one another.
[54" id="US-20010002826-A1-CLM-00054] 54. An embedded circuit comprising:
a substrate having a recess therein;
a conductive circuit printed at least partially within the recess;
an integrated circuit chip bonded to the conductive circuit; and
a battery in electrical connection with the integrated circuit chip.
[55" id="US-20010002826-A1-CLM-00055] 55. The embedded circuit of
claim 54 wherein at least one of the battery and the integrated circuit chip is at least partially within the recess.
[56" id="US-20010002826-A1-CLM-00056] 56. The embedded circuit of
claim 54 wherein the substrate is a card configured for carrying on a person.
[57" id="US-20010002826-A1-CLM-00057] 57. The embedded circuit of
claim 54 further comprising a protective cover formed over the recess.
[58" id="US-20010002826-A1-CLM-00058] 58. The embedded circuit of
claim 54 further comprising a loop antenna in electrical connection with the integrated circuit chip, the loop antenna comprising a bypass where portions of the antenna cross one another, the bypass comprising a dielectric material between the crossing portions of the antenna.
[59" id="US-20010002826-A1-CLM-00059] 59. The embedded circuit of
claim 58 wherein the portions of the antenna which cross one another are substantially perpendicular to one another.
[60" id="US-20010002826-A1-CLM-00060] 60. An embedded circuit comprising:
a substrate having a recess therein, the recess having a bottom surface and a sidewall surface joined to the bottom surface;
interconnect circuitry formed on the bottom and sidewall surfaces; and
an integrated circuit chip within the recess and operatively connected to the interconnect circuitry.
[61" id="US-20010002826-A1-CLM-00061] 61. The embedded circuit of
claim 60 wherein the substrate is a card configured for carrying on a person.
[62" id="US-20010002826-A1-CLM-00062] 62. The embedded circuit of
claim 60 further comprising a protective cover formed over the circuitry.
[63" id="US-20010002826-A1-CLM-00063] 63. The embedded circuit of
claim 60 further comprising:
an antenna electrically connected to the integrated circuit chip; and
a battery within the recess and electrically connected to the interconnect circuitry.
[64" id="US-20010002826-A1-CLM-00064] 64. An embedded circuit comprising:
a substrate having a first recess and a second recess formed therein;
interconnect circuitry between the first and second recesses and within the first and second recesses;
a first electrical component within the first recess and in electrical connection with the interconnect circuitry;
a second electrical component within the second recess and in electrical connection with the interconnect circuitry; and
at least one protective cover over the first electrical component, the second electrical component and the interconnect circuitry.
[65" id="US-20010002826-A1-CLM-00065] 65. The embedded circuit of
claim 64 wherein the first and second recesses comprise bottom surfaces and sidewall surfaces extending from the bottom surfaces, wherein the first and second recesses are separated from one another by at least one of said sidewall surfaces, and wherein the interconnect circuitry extends continuously from the bottom surface of the first recess to the bottom surface of the second recess and over said at least one sidewall surface.
[66" id="US-20010002826-A1-CLM-00066] 66. The embedded circuit of
claim 65 wherein at least one sidewall surface extends non-perpendicularly from at least one of the bottom surfaces.
[67" id="US-20010002826-A1-CLM-00067] 67. The embedded circuit of
claim 65 wherein at least one sidewall surface extends non-perpendicularly from both of the bottom surfaces.
[68" id="US-20010002826-A1-CLM-00068] 68. The embedded circuit of
claim 64 wherein the first recess is within the second recess.
类似技术:
公开号 | 公开日 | 专利标题
US6271801B2|2001-08-07|Embedded circuits
EP1535240B1|2009-03-11|Sim, ic module and ic card
US6068192A|2000-05-30|Tamper resistant smart card and method of protecting data in a smart card
US6254006B1|2001-07-03|Wireless communication devices and methods of forming wireless communication devices
US5612532A|1997-03-18|Thin IC card and method for producing the same
US6910636B2|2005-06-28|IC card and manufacturing method thereof
US6177859B1|2001-01-23|Radio frequency communication apparatus and methods of forming a radio frequency communication apparatus
US6375083B2|2002-04-23|Smart card
US20110011939A1|2011-01-20|Contact-less and dual interface inlays and methods for producing the same
JP2008539473A|2008-11-13|Laminate structure with printed elements
US7069652B2|2006-07-04|Method for producing laminated smart cards
EP0934576A2|1999-08-11|Pocket value terminal
US6273339B1|2001-08-14|Tamper resistant smart card and method of protecting data in a smart card
US6651891B1|2003-11-25|Method for producing contactless chip cards and corresponding contactless chip card
JP3853480B2|2006-12-06|Non-contact IC card
WO1997042598A1|1997-11-13|Smart card formed with two joined sheets
JPH11213119A|1999-08-06|Composite type ic card
JP2004227331A|2004-08-12|Ic card and method for producing it
JPH11115354A|1999-04-27|Ic module and composite ic card using the module
同族专利:
公开号 | 公开日
JP2001523364A|2001-11-20|
JP2005115959A|2005-04-28|
GB2339407A|2000-01-26|
DE19882361T1|2000-05-11|
AU7470898A|1998-11-24|
JP3996155B2|2007-10-24|
GB2339407B|2001-12-19|
USRE40137E1|2008-03-04|
US6271801B2|2001-08-07|
WO1998049653A1|1998-11-05|
US6329213B1|2001-12-11|
JP3705444B2|2005-10-12|
GB9925874D0|1999-12-29|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US4065343A|1975-11-14|1977-12-27|Rexnord Inc.|Label system for package and baggage handling|
US4587038A|1980-06-26|1986-05-06|Canon Kabushiki Kaisha|Electro-optic display device and a method of producing the same|
US4634849A|1985-04-02|1987-01-06|Klingen Leonard G|Uniquely numbered baggage split tag and system for handling baggage|
US4924237A|1988-03-28|1990-05-08|Matsushita Electric Works, Ltd.|Antenna and its electronic circuit combination|
US5124733A|1989-04-28|1992-06-23|Saitama University, Department Of Engineering|Stacked microstrip antenna|
US5480834A|1993-12-13|1996-01-02|Micron Communications, Inc.|Process of manufacturing an electrical bonding interconnect having a metal bond pad portion and having a conductive epoxy portion comprising an oxide reducing agent|
US6049461A|1995-07-26|2000-04-11|Giesecke & Devrient Gmbh|Circuit unit and a method for producing a circuit unit|
US5817207A|1995-10-17|1998-10-06|Leighton; Keith R.|Radio frequency identification card and hot lamination process for the manufacture of radio frequency identification cards|
US6052062A|1997-08-20|2000-04-18|Micron Technology, Inc.|Cards, communication devices, and methods of forming and encoding visibly perceptible information on the same|
US6229441B1|1997-11-13|2001-05-08|Micron Technology, Inc.|Communication devices, radio frequency identification devices, methods of forming a communication device, and methods of forming a radio frequency identification device|
US6956538B2|1999-08-09|2005-10-18|Micron Technology, Inc.|RFID material tracking method and apparatus|
US7262609B2|2005-06-03|2007-08-28|Synaptics Incorporated|Methods and systems for guarding a charge transfer capacitance sensor for proximity detection|US20040129786A1|2001-02-02|2004-07-08|Yves Reignoux|Portable object with chip and antenna|
US20070049092A1|2005-08-25|2007-03-01|Wei Koh|Method of fabricating a chip|
US20090051538A1|2004-06-18|2009-02-26|Infineon Technologies Ag|Transceiver device|
US20090102741A1|2005-07-29|2009-04-23|Beijing Watch Data System Co., Ltd.|Antenna for the plug-in dual-interface smart card|
US20100127084A1|2008-11-25|2010-05-27|Vikram Pavate|Printed Antennas, Methods of Printing an Antenna, and Devices Including the Printed Antenna|
US20100149050A1|2007-05-25|2010-06-17|Laird Technologies Ab|Antenna Device and a Portable Radio Communication Device Comprising Such An Antenna Device|
EP2840530A1|2013-08-23|2015-02-25|Gemalto SA|Electronic memory device|
CN106485311A|2016-09-13|2017-03-08|上海商格信息科技有限公司|A kind of novel electronic label production technology|GB1196201A|1967-09-19|1970-06-24|Tokyo Shibaura Electric Co|A method of Printing Electrical Circuits onto Substrates|
DK134666C|1970-02-20|1977-05-23|Svejsecentralen||
US3706094A|1970-02-26|1972-12-12|Peter Harold Cole|Electronic surveillance system|
US4049969A|1970-03-19|1977-09-20|The United States Of America As Represented By The Secretary Of The Air Force|Passive optical transponder|
US3750167A|1971-07-22|1973-07-31|Gen Dynamics Corp|Postal tracking system|
US3832530A|1972-01-04|1974-08-27|Westinghouse Electric Corp|Object identifying apparatus|
US3849633A|1972-01-04|1974-11-19|Westinghouse Electric Corp|Object identifying apparatus|
JPS5516388B2|1972-09-11|1980-05-01|||
US4075632A|1974-08-27|1978-02-21|The United States Of America As Represented By The United States Department Of Energy|Interrogation, and detection system|
FR2337381B1|1975-12-31|1979-07-06|Cii Honeywell Bull||
US4232512A|1976-12-27|1980-11-11|Citizen Watch Co., Ltd.|Solid state watch module construction|
US4135184A|1977-08-31|1979-01-16|Knogo Corporation|Electronic theft detection system for monitoring wide passageways|
AT374596B|1979-04-20|1984-05-10|Enander Bengt|TO FIND AVALANCHE VICTIMS, ANSWERS TO BE WEARED ON THE BODY|
US4412356A|1980-01-14|1983-10-25|Iowa State University Research Foundation, Inc.|Light actuated remote control security system|
AU533981B2|1980-01-25|1983-12-22|Unisearch Limited|Remote temperature reading|
US5164732A|1980-02-13|1992-11-17|Eid Electronic Identification Systems Ltd.|Highway vehicle identification system with high gain antenna|
DE3009179A1|1980-03-11|1981-09-24|Brown, Boveri & Cie Ag, 6800 Mannheim|METHOD AND DEVICE FOR GENERATING THE REPLY SIGNAL OF A DEVICE FOR AUTOMATICALLY IDENTIFYING OBJECTS AND / OR LIVING BEINGS|
US4756717A|1981-08-24|1988-07-12|Polaroid Corporation|Laminar batteries and methods of making the same|
US4413254A|1981-09-04|1983-11-01|Sensormatic Electronics Corporation|Combined radio and magnetic energy responsive surveillance marker and system|
DE3143915C2|1981-11-05|1987-12-03|Brown, Boveri & Cie Ag, 6800 Mannheim, De||
DE3201065A1|1982-01-15|1983-07-28|Schwarzwälder Elektronik-Werke GmbH, 7730 Villingen-Schwenningen|Method of printing printed circuit boards|
US4484355A|1983-04-11|1984-11-20|Ritron, Inc.|Handheld transceiver with frequency synthesizer and sub-audible tone squelch system|
US4827395A|1983-04-21|1989-05-02|Intelli-Tech Corporation|Manufacturing monitoring and control systems|
US5134277A|1983-11-07|1992-07-28|Australian Meat And Live-Stock Corporation|Remote data transfer system with ambient light insensitive circuitry|
US4539472A|1984-01-06|1985-09-03|Horizon Technology, Inc.|Data processing card system and method of forming same|
US4918631A|1984-09-07|1990-04-17|Casio Computer Co., Ltd.|Compact type electronic information card|
NL8501542A|1985-05-30|1986-12-16|Philips Nv|LOAD-COUPLED DEVICE.|
US4783646A|1986-03-07|1988-11-08|Kabushiki Kaisha Toshiba|Stolen article detection tag sheet, and method for manufacturing the same|
US4746830A|1986-03-14|1988-05-24|Holland William R|Electronic surveillance and identification|
US4777563A|1986-05-02|1988-10-11|Toshiba Battery Co., Ltd.|Thin type electronic instrument|
EP0247612B1|1986-05-30|1993-08-04|Sharp Kabushiki Kaisha|Microwave data transmission apparatus|
US4857893A|1986-07-18|1989-08-15|Bi Inc.|Single chip transponder device|
US4724427A|1986-07-18|1988-02-09|B. I. Incorporated|Transponder device|
US4742340A|1986-12-04|1988-05-03|Isomed, Inc.|Method and apparatus for detecting counterfeit articles|
JPS63149191A|1986-12-15|1988-06-21|Hitachi Maxell|Ic card|
US4854328A|1987-03-23|1989-08-08|Philip Pollack|Animal monitoring telltale and information system|
US4827110A|1987-06-11|1989-05-02|Fluoroware, Inc.|Method and apparatus for monitoring the location of wafer disks|
US4746618A|1987-08-31|1988-05-24|Energy Conversion Devices, Inc.|Method of continuously forming an array of photovoltaic cells electrically connected in series|
JPH01157896A|1987-09-28|1989-06-21|Mitsubishi Electric Corp|Non-contact type ic card and non-contact type card reader-writer|
US5144314A|1987-10-23|1992-09-01|Allen-Bradley Company, Inc.|Programmable object identification transponder system|
US5302954A|1987-12-04|1994-04-12|Magellan Corporation Pty. Ltd.|Identification apparatus and methods|
JPH01191082A|1988-01-27|1989-08-01|Sony Corp|Transmitter receiver|
JPH01303910A|1988-06-01|1989-12-07|Hitachi Ltd|Solid-state electronic element, its manufacture and device utilizing the element|
AU626013B2|1988-07-04|1992-07-23|Sony Corporation|A thin electronic device having an integrated circuit chip and a power battery and a method for producing same|
JP2776836B2|1988-07-27|1998-07-16|富士通株式会社|Data processing device|
AU631595B2|1988-12-24|1992-12-03|Technology Applications Company Limited|Improved method for making printed circuits|
JPH02179794A|1988-12-29|1990-07-12|Sony Corp|Data card|
US4911217A|1989-03-24|1990-03-27|The Goodyear Tire & Rubber Company|Integrated circuit transponder in a pneumatic tire for tire identification|
EP0409016A3|1989-07-10|1992-07-01|Csir|System and method for locating labelled objects|
US5023573A|1989-09-21|1991-06-11|Westinghouse Electric Corp.|Compact frequency selective limiter configuration|
DE3935364C1|1989-10-24|1990-08-23|Angewandte Digital Elektronik Gmbh, 2051 Brunstorf, De||
US5095240A|1989-11-13|1992-03-10|X-Cyte, Inc.|Inductively coupled saw device and method for making the same|
JPH03189786A|1989-12-19|1991-08-19|Sony Corp|Information card device|
US5166502A|1990-01-05|1992-11-24|Trend Plastics, Inc.|Gaming chip with implanted programmable identifier means and process for fabricating same|
US5124782A|1990-01-26|1992-06-23|Sgs-Thomson Microelectronics, Inc.|Integrated circuit package with molded cell|
JPH03224799A|1990-01-31|1991-10-03|Sony Corp|Data card|
US5008776A|1990-06-06|1991-04-16|Sgs-Thomson Microelectronics, Inc.|Zero power IC module|
US5274221A|1990-06-22|1993-12-28|Mitsubishi Denki Kabushiki Kaisha|Non-contact integrated circuit card|
JPH0454581A|1990-06-22|1992-02-21|Mitsubishi Electric Corp|Non-contact card|
SE9002493L|1990-07-24|1991-09-02|Staffan Gunnarsson|VEHICLE DEVICE MAINTAINS POSITIONING BY AUTOMATIC FUELING|
JPH0496520A|1990-08-13|1992-03-27|Sharp Corp|Data transmitter|
KR100227055B1|1990-11-06|1999-10-15|로데릭 더블류 루이스|Dual mode electronic identification system and tag|
JPH04321190A|1991-04-22|1992-11-11|Mitsubishi Electric Corp|Antenna circuit and its production for non-contact type portable storage|
US5340968A|1991-05-07|1994-08-23|Nippondenso Company, Ltd.|Information storage medium with electronic and visual areas|
JP2998288B2|1991-06-06|2000-01-11|株式会社デンソー|Electronic tag|
US5153710A|1991-07-26|1992-10-06|Sgs-Thomson Microelectronics, Inc.|Integrated circuit package with laminated backup cell|
FR2681711B1|1991-09-20|1996-08-02|Itt Composants Instr|PORTABLE CASE FOR AN ELECTRONIC MEMORY CARD|
US5266925A|1991-09-30|1993-11-30|Westinghouse Electric Corp.|Electronic identification tag interrogation method|
US5148504A|1991-10-16|1992-09-15|At&T Bell Laboratories|Optical integrated circuit designed to operate by use of photons|
JPH05169885A|1991-12-26|1993-07-09|Mitsubishi Electric Corp|Thin ic card|
NL9200835A|1992-05-11|1993-12-01|Nedap Nv|FLEXIBLE COIL CONSTRUCTION IN IDENTIFICATION CARD.|
US5572226A|1992-05-15|1996-11-05|Micron Technology, Inc.|Spherical antenna pattern from antenna arranged in a two-dimensional plane for use in RFID tags and labels|
DE4319878A1|1992-06-17|1993-12-23|Micron Technology Inc|High frequency identification system card - has integrated circuit chip or carrier layer sealed by top layer and coupled to batteries and antenna system|
US5779839A|1992-06-17|1998-07-14|Micron Communications, Inc.|Method of manufacturing an enclosed transceiver|
US5776278A|1992-06-17|1998-07-07|Micron Communications, Inc.|Method of manufacturing an enclosed transceiver|
US5497140A|1992-08-12|1996-03-05|Micron Technology, Inc.|Electrically powered postage stamp or mailing or shipping label operative with radio frequency communication|
GB9222460D0|1992-10-26|1992-12-09|Hughes Microelectronics Europa|Radio frequency baggage tag|
US5347263A|1993-02-05|1994-09-13|Gnuco Technology Corporation|Electronic identifier apparatus and method utilizing a single chip microcontroller and an antenna coil|
ZA941671B|1993-03-11|1994-10-12|Csir|Attaching an electronic circuit to a substrate.|
US5412192A|1993-07-20|1995-05-02|American Express Company|Radio frequency activated charge card|
FR2716281B1|1994-02-14|1996-05-03|Gemplus Card Int|Method of manufacturing a contactless card.|
US5471212A|1994-04-26|1995-11-28|Texas Instruments Incorporated|Multi-stage transponder wake-up, method and structure|
DE4416697A1|1994-05-11|1995-11-16|Giesecke & Devrient Gmbh|Data carrier with integrated circuit|
EP0688051B1|1994-06-15|1999-09-15|De La Rue Cartes Et Systemes|Fabrication process and assembly of an integrated circuit card.|
US5600175A|1994-07-27|1997-02-04|Texas Instruments Incorporated|Apparatus and method for flat circuit assembly|
DE4431605C2|1994-09-05|1998-06-04|Siemens Ag|Method for producing a chip card module for contactless chip cards|
US5528222A|1994-09-09|1996-06-18|International Business Machines Corporation|Radio frequency circuit and memory in thin flexible package|
US5541399A|1994-09-30|1996-07-30|Palomar Technologies Corporation|RF transponder with resonant crossover antenna coil|
JP3559322B2|1994-11-14|2004-09-02|株式会社東芝|Method of manufacturing thin composite IC card|
US5649296A|1995-06-19|1997-07-15|Lucent Technologies Inc.|Full duplex modulated backscatter system|
FR2736740A1|1995-07-11|1997-01-17|Trt Telecom Radio Electr|PROCESS FOR PRODUCING AND ASSEMBLING INTEGRATED CIRCUIT BOARD AND CARD THUS OBTAINED|
US6036099A|1995-10-17|2000-03-14|Leighton; Keith|Hot lamination process for the manufacture of a combination contact/contactless smart card and product resulting therefrom|
DE19700666A1|1996-03-08|1998-07-16|Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh|Electrical circuit arrangement for the operation of electric lamps|
US6130602A|1996-05-13|2000-10-10|Micron Technology, Inc.|Radio frequency data communications device|
US5955949A|1997-08-18|1999-09-21|X-Cyte, Inc.|Layered structure for a transponder tag|
US5982284A|1997-09-19|1999-11-09|Avery Dennison Corporation|Tag or label with laminated thin, flat, flexible device|
EP1112560B1|1998-09-11|2008-06-18|Motorola, Inc.|Radio frequency identification tag apparatus and related method|
US6294998B1|2000-06-09|2001-09-25|Intermec Ip Corp.|Mask construction for profile correction on an RFID smart label to improve print quality and eliminate detection|US6817532B2|1992-02-12|2004-11-16|Lenscard U.S., Llc|Wallet card with built-in light|
US7158031B2|1992-08-12|2007-01-02|Micron Technology, Inc.|Thin, flexible, RFID label and system for use|
US6339385B1|1997-08-20|2002-01-15|Micron Technology, Inc.|Electronic communication devices, methods of forming electrical communication devices, and communication methods|
FR2779255B1|1998-05-27|2001-10-12|Gemplus Card Int|METHOD FOR MANUFACTURING A PORTABLE ELECTRONIC DEVICE COMPRISING AT LEAST ONE INTEGRATED CIRCUIT CHIP|
JP3180086B2|1998-08-31|2001-06-25|株式会社シーメディア|Mobile communication device, information transmission system and method, non-contact IC media usable in mobile communication device|
DE19921678A1|1999-05-11|2000-11-23|Giesecke & Devrient Gmbh|Manufacture of carrier e.g. multifunctional chip card with display, involves covering base with flowable plastic material so that electronic components are partially embedded and processing upper side of plastics material|
FR2797076B1|1999-07-30|2003-11-28|Gemplus Card Int|METHOD FOR MANUFACTURING A CONTACT CHIP CARD|
US6518885B1|1999-10-14|2003-02-11|Intermec Ip Corp.|Ultra-thin outline package for integrated circuit|
US6421011B1|1999-10-22|2002-07-16|Lucent Technologies Inc.|Patch antenna using non-conductive frame|
US6407704B1|1999-10-22|2002-06-18|Lucent Technologies Inc.|Patch antenna using non-conductive thermo form frame|
DE10047213A1|2000-09-23|2002-04-11|Philips Corp Intellectual Pty|Electric or electronic component e.g. for microelectronics, has electrically-conducting connection element between contact surface of component and section of contact path|
GB2372012A|2001-01-18|2002-08-14|Pioneer Oriental Engineering L|Forming a high frequency contact-less smart card with an antenna coil|
US6462711B1|2001-04-02|2002-10-08|Comsat Corporation|Multi-layer flat plate antenna with low-cost material and high-conductivity additive processing|
US6606247B2|2001-05-31|2003-08-12|Alien Technology Corporation|Multi-feature-size electronic structures|
US8430749B2|2001-08-10|2013-04-30|Igt|Dynamic casino tracking and optimization|
US7993197B2|2001-08-10|2011-08-09|Igt|Flexible loyalty points programs|
US7946917B2|2001-08-10|2011-05-24|Igt|Flexible loyalty points programs|
US6992585B2|2001-10-02|2006-01-31|Rameez Saleh|Security system incorporating a single modular unit motion sensor|
US20030076093A1|2001-10-18|2003-04-24|Microchip Technology Incorporated|Reducing orientation directivity and improving operating distance of magnetic sensor coils in a magnetic field|
US6951596B2|2002-01-18|2005-10-04|Avery Dennison Corporation|RFID label technique|
GB2388744A|2002-03-01|2003-11-19|Btg Int Ltd|An RFID tag|
US20030212597A1|2002-05-10|2003-11-13|Igt|Multi-level point accumulation for a player tracking system and method|
US8979646B2|2002-06-12|2015-03-17|Igt|Casino patron tracking and information use|
US6867983B2|2002-08-07|2005-03-15|Avery Dennison Corporation|Radio frequency identification device and method|
US7993773B2|2002-08-09|2011-08-09|Infinite Power Solutions, Inc.|Electrochemical apparatus with barrier layer protected substrate|
US20070264564A1|2006-03-16|2007-11-15|Infinite Power Solutions, Inc.|Thin film battery on an integrated circuit or circuit board and method thereof|
US8236443B2|2002-08-09|2012-08-07|Infinite Power Solutions, Inc.|Metal film encapsulation|
US8394522B2|2002-08-09|2013-03-12|Infinite Power Solutions, Inc.|Robust metal film encapsulation|
US8445130B2|2002-08-09|2013-05-21|Infinite Power Solutions, Inc.|Hybrid thin-film battery|
US8404376B2|2002-08-09|2013-03-26|Infinite Power Solutions, Inc.|Metal film encapsulation|
US8431264B2|2002-08-09|2013-04-30|Infinite Power Solutions, Inc.|Hybrid thin-film battery|
US8021778B2|2002-08-09|2011-09-20|Infinite Power Solutions, Inc.|Electrochemical apparatus with barrier layer protected substrate|
US7253735B2|2003-03-24|2007-08-07|Alien Technology Corporation|RFID tags and processes for producing RFID tags|
US7051429B2|2003-04-11|2006-05-30|Eastman Kodak Company|Method for forming a medium having data storage and communication capabilities|
US8728285B2|2003-05-23|2014-05-20|Demaray, Llc|Transparent conductive oxides|
JP4037332B2|2003-07-10|2008-01-23|シャープ株式会社|IC module and IC card|
US7689459B2|2003-09-24|2010-03-30|Industiral Technology Research Institute|Card with embedded bistable display having short and long term information|
GB0401575D0|2004-01-24|2004-02-25|Kam Kin F|A compact electronic activity reminder device|
DE102004007458A1|2004-02-13|2005-09-01|Man Roland Druckmaschinen Ag|Process for the production of RFID labels|
US7268063B1|2004-06-01|2007-09-11|University Of Central Florida|Process for fabricating semiconductor component|
US7500307B2|2004-09-22|2009-03-10|Avery Dennison Corporation|High-speed RFID circuit placement method|
US7688206B2|2004-11-22|2010-03-30|Alien Technology Corporation|Radio frequency identificationtag for an item having a conductive layer included or attached|
US7959769B2|2004-12-08|2011-06-14|Infinite Power Solutions, Inc.|Deposition of LiCoO2|
CN101931097B|2004-12-08|2012-11-21|希莫菲克斯公司|Deposition of LiCoO2|
US7239244B2|2005-04-22|2007-07-03|Se-Kure Controls, Inc.|System and method for monitoring a portable article|
US7623034B2|2005-04-25|2009-11-24|Avery Dennison Corporation|High-speed RFID circuit placement method and device|
KR100618903B1|2005-06-18|2006-09-01|삼성전자주식회사|Semiconductor integrated circuit and semiconductor system having independent power supply and manufacturing method thereof|
US20060289636A1|2005-06-27|2006-12-28|Hoblit Robert S|Food card to restrict purchases|
JP2009503718A|2005-08-01|2009-01-29|パワリッドエルティーディー.|Intermediate attachment mechanism in RFID transponders and use of this mechanism|
US7555826B2|2005-12-22|2009-07-07|Avery Dennison Corporation|Method of manufacturing RFID devices|
DE102006025000A1|2006-03-03|2007-09-06|Hamedani, Soheil|Precious metal object with RFID identifier|
US8232621B2|2006-07-28|2012-07-31|Semiconductor Energy Laboratory Co., Ltd.|Semiconductor device|
US7714535B2|2006-07-28|2010-05-11|Semiconductor Energy Laboratory Co., Ltd.|Power storage device|
US7838976B2|2006-07-28|2010-11-23|Semiconductor Energy Laboratory Co., Ltd.|Semiconductor device having a semiconductor chip enclosed by a body structure and a base|
EP2060591A4|2006-09-14|2011-05-25|Yokohama Rubber Co Ltd|Urethane emulsion|
US20080179404A1|2006-09-26|2008-07-31|Advanced Microelectronic And Automation Technology Ltd.|Methods and apparatuses to produce inlays with transponders|
US8062708B2|2006-09-29|2011-11-22|Infinite Power Solutions, Inc.|Masking of and material constraint for depositing battery layers on flexible substrates|
US8197781B2|2006-11-07|2012-06-12|Infinite Power Solutions, Inc.|Sputtering target of Li3PO4 and method for producing same|
JP5248240B2|2007-08-30|2013-07-31|株式会社半導体エネルギー研究所|Semiconductor device|
JP4756020B2|2007-09-25|2011-08-24|株式会社東芝|Housing, method for manufacturing the same, and electronic device|
JP5141187B2|2007-10-26|2013-02-13|富士通株式会社|RFID tag manufacturing method|
TWI441937B|2007-12-21|2014-06-21|Infinite Power Solutions Inc|Method for sputter targets for electrolyte films|
US8268488B2|2007-12-21|2012-09-18|Infinite Power Solutions, Inc.|Thin film electrolyte for thin film batteries|
JP5705549B2|2008-01-11|2015-04-22|インフィニット パワー ソリューションズ, インコーポレイテッド|Thin film encapsulation for thin film batteries and other devices|
US8786443B2|2008-02-26|2014-07-22|Avery Dennison Corporation|RFID tag for direct and indirect food contact|
KR101672254B1|2008-04-02|2016-11-08|사푸라스트 리써치 엘엘씨|Passive over/under voltage control and protection for energy storage devices associated with energy harvesting|
KR20110058793A|2008-08-11|2011-06-01|인피니트 파워 솔루션스, 인크.|Energy device with integral collector surface for electromagnetic energy harvesting and method thereof|
EP2332127A4|2008-09-12|2011-11-09|Infinite Power Solutions Inc|Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof|
US8360298B2|2008-09-23|2013-01-29|Covidien Lp|Surgical instrument and loading unit for use therewith|
WO2010042594A1|2008-10-08|2010-04-15|Infinite Power Solutions, Inc.|Environmentally-powered wireless sensor module|
US8162737B2|2009-05-27|2012-04-24|Igt|Contactless player card with improved security|
TWI485825B|2009-07-28|2015-05-21|Xintec Inc|Chip package and manufacturing method thereof|
EP2474056B1|2009-09-01|2016-05-04|Sapurast Research LLC|Printed circuit board with integrated thin film battery|
US8390083B2|2009-09-04|2013-03-05|Analog Devices, Inc.|System with recessed sensing or processing elements|
JP5522386B2|2010-04-27|2014-06-18|ミツミ電機株式会社|Patch antenna and manufacturing method thereof|
EP2577777B1|2010-06-07|2016-12-28|Sapurast Research LLC|Rechargeable, high-density electrochemical device|
WO2012051340A1|2010-10-12|2012-04-19|Analog Devices, Inc.|Microphone package with embedded asic|
US20140029208A1|2011-04-07|2014-01-30|Nec Corporation|Component-containing module and method for producing component-containing module|
DE102011051946A1|2011-07-19|2013-01-24|Dorma Gmbh + Co. Kg|Door opener with means for detecting the position of moving parts of the door opener|
FR3009411A1|2013-08-02|2015-02-06|Ask Sa|IDENTITY BOOK COVER WITH RADIO FREQUENCY DEVICE AND METHOD FOR MANUFACTURING THE SAME|
CN104576883B|2013-10-29|2018-11-16|普因特工程有限公司|Chip installation array substrate and its manufacturing method|
US10092290B2|2015-03-17|2018-10-09|Covidien Lp|Surgical instrument, loading unit for use therewith and related methods|
US9666558B2|2015-06-29|2017-05-30|Point Engineering Co., Ltd.|Substrate for mounting a chip and chip package using the substrate|
US10320054B2|2016-10-28|2019-06-11|Avery Dennison Retail Information Services, Llc|RFID tags designed to work on difficult substrates|
法律状态:
1999-05-04| AS| Assignment|Owner name: AVANDEL INCORPORATED, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOODHUE, EDMUND M.;WOLF, KARL E.;UNDERWOOD, HOWARD R.;REEL/FRAME:009949/0465 Effective date: 19990504 |
1999-11-18| AS| Assignment|Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: MERGER;ASSIGNOR:MICRON COMMUNICATIONS, INC.;REEL/FRAME:010381/0123 Effective date: 19990901 |
2001-07-19| STCF| Information on status: patent grant|Free format text: PATENTED CASE |
2005-01-11| FPAY| Fee payment|Year of fee payment: 4 |
2007-09-13| AS| Assignment|Owner name: KEYSTONE TECHNOLOGY SOLUTIONS, LLC, IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:019825/0542 Effective date: 20070628 Owner name: KEYSTONE TECHNOLOGY SOLUTIONS, LLC,IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:019825/0542 Effective date: 20070628 |
2009-01-07| FPAY| Fee payment|Year of fee payment: 8 |
2010-01-04| AS| Assignment|Owner name: ROUND ROCK RESEARCH, LLC,NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416 Effective date: 20091223 Owner name: ROUND ROCK RESEARCH, LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416 Effective date: 20091223 |
2010-01-26| AS| Assignment|Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KEYSTONE TECHNOLOGY SOLUTIONS, LLC;REEL/FRAME:023839/0881 Effective date: 20091222 Owner name: MICRON TECHNOLOGY, INC.,IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KEYSTONE TECHNOLOGY SOLUTIONS, LLC;REEL/FRAME:023839/0881 Effective date: 20091222 |
2013-01-09| FPAY| Fee payment|Year of fee payment: 12 |
优先权:
申请号 | 申请日 | 专利标题
US08/847,123|US6329213B1|1997-05-01|1997-05-01|Methods for forming integrated circuits within substrates|
US09/305,107|US6271801B2|1997-05-01|1999-05-04|Embedded circuits|US09/305,107| US6271801B2|1997-05-01|1999-05-04|Embedded circuits|
[返回顶部]